

component-injector

This library provides a framework-agnostic component (or dependency)
injector that injects registered components into your function calls.
The components to insert are identified by looking at the called
function argument annotations.

When registering a component, all its base classes are registered as
well unless you explicitly disable that. You can also choose to only
register base classes that are not already registered with the
injector.

It provides local scopes where you can register additional components
or override existing components. After exiting the scope, the registry
will return to the state it was in before entering the scope.

Contents:

	Components

	Factories
	Asynchronous factories

	Scopes
	Basic usage

	Persistent factories

	Re-entering scopes

Modules:

	component_injector

Indices and tables

	Index

	Module Index

	Search Page

Components

Adding components, which are instantiated classes, to the injector and
injecting them in your function arguments are the most basic
functionality the injector.

A small demonstration:

from component_injector import Injector

Define a component to inject.
class MyFirstComponent:
 def __init__(self):
 print("Initializing MyFirstComponent."

Create an injector namespace.
injector = Injector()

Instantiate the component and register it with the injector.
component = MyFirstComponent()
injector.register(component)

Define a function that uses the component and connect it to
the injector.
@injector.inject
def my_component_consumer(component: MyFirstComponent):
 print(component)

Calling the consumer without specifying the `component`
argument will trigger the injector to add it automatically.
my_component_consumer()

Factories

If constructing your component is expensive and you only want to
instantiate it if it’s really necessary you can add a factory function
to the injector which will only be called when the component is needed.

When registering a factory function, make sure the return type
annotation matches the type of the component you want to inject.

Demonstration:

import time
from component_injector import Injector

injector = Injector()

class CheapComponent:
 pass

class ExpensiveComponent:
 pass

def expensive_factory() -> ExpensiveComponent:
 time.sleep(1)
 return ExpensiveComponent()

injector.register(CheapComponent())
injector.register_factory(expensive_factory)

@injector.inject
def consumer_1(c1: CheapComponent):
 pass

@injector.inject
def consumer_2(c1: CheapComponent, c2: ExpensiveComponent):
 pass

This will not create the expensive components.
consumer_1()

ExpensiveComponent will not be instantiated until needed.
consumer_2()

Needing it again will use the same instance created before.
consumer_2()

Asynchronous factories

If you register a factory that returns an Awaitable, you can use it
to inject the resolved component into a coroutine:

import asyncio
from component_injector import Injector

class Component:
 pass

async def factory() -> Component:
 await asyncio.sleep(1)
 return Component()

injector = Injector()
injector.register_factory(factory)

@injector.inject
async def consumer(c: Component):
 pass

loop = asyncio.get_event_loop()
loop.run_until_complete(consumer())

Scopes

A scope can be used to provide components (or factories) that are only
valid in a certain context. f.e. If you use the injector with a web
framework, you can add request-specific components to the injector in
a separate scope as to not pollute the global scope.

Note that scopes are based on python’s contextvars. This means they
are thread safe when using the backported package for python 3.6. On
python 3.7 and newer, they are also safe to use with asyncio tasks
as well.

Basic usage

Basic example:

from component_injector import Injector

The configuration is a global component and will be added and
available from the root scope.
class Config:
 loglevel = "DEBUG"

This class describes the current request and is request-specific.
class Request:
 def __init__(self, method, path):
 self.method = method
 self.path = path

injector = Injector()

@injector.inject
def handle_request(config: Config, request: Request):
 if config.loglevel == "DEBUG":
 print(request.method, request.path)

Register our global configuration component.
injector.register(Config())

When receiving a request, set up a new scope:
with injector.scope():
 injector.register(Request("GET", "/index.html"))
 handle_request()

This will fail, after leaving the scope the request was removed
from the injector.
handle_request()

Persistent factories

By default, the components created by factories are added to the current
scope and removed when exiting the scope. It is however possible to
instruct the injector to store the component in the same scope as the
factory. You can do this by setting the persistent flag to True
when adding the factory:

from component_injector import Injector

class Component:
 pass

injector = Injector()

@injector.inject
def consume(c: Component):
 return c

injector.register_factory(Component)

Set up a new scope:
with injector.scope():
 # Call the consumer, triggering the factory.
 c1 = consume()
 # Ensure the same component is injected again.
 assert c1 is consume()

After exiting the scope, the component will be cleaned up. Calling
the consumer again will trigger the factory once more.
with injector.scope():
 assert c1 is not consume()

Now, let's re-add the factory but this time make it persistent.
injector.register_factory(Component, persistent=True)

Set up a new scope and call the consumer. This will create the
component and insert it into the root scope as that is where the
factory is located.
with injector.scope():
 c1 = consume()

Even after leavig the scope the component was created in, the
component persists because the factory is part of the root scope.
assert c1 is consume()

Re-entering scopes

If needed, you can re-enter a specific scope as well:

from component_injector import Injector

class Component:
 def __init__(self, msg):
 self.msg = msg

injector = Injector()

@injector.inject
def consumer(c: Component):
 return c.msg

with injector.scope() as ctx:
 injector.register(Component("Initial scope"))

 assert consumer() == "Initial scope"

 with injector.scope():
 injector.register(Component("Secondary scope"))

 assert consumer() == "Secondary scope"

 # Re-enter initial scope
 with ctx:
 assert consumer() == "Initial scope"

 # We're now back in the secondary scope.
 assert consumer() == "Secondary scope"

component_injector

	
class component_injector.Injector

	Provides a basic injector namespace. It’s common to use one
injector per project.

	
get_component(type_: Type[T]) → T

	Get a component from the injector’s current scope. Materialize
it using a factory if necessary.

Note that it is an error to use this function to get a
component that has a factory that returns an Awaitable.

	Parameters

	type – The type of the component to return.

	Returns

	The materialized component.

	
get_component_async(type_: Type[T]) → T

	Get a component from the injector’s current scope. Materialize
it using a factory if necessary.

Use this method if the component’s factory function returns an
Awaitable.

	Parameters

	type – The type of the component to return.

	Returns

	The materialized component.

	
inject(f: Callable[[...], T]) → Callable[[...], T]

	This decorator will connect the injector to a function or
method. When the resulting function is called, the provided
arguments will be checked against the function’s signature and
any missing arguments the injector has a component or factory
those arguments will be filled in.

	Parameters

	f – The function or method to inject components into.

	Returns

	The decorated function.

	
register(component: Any, *, bases: bool = True, overwrite_bases: bool = True) → None

	Register a new component with the injector.

	Parameters

	
	component – The component to register with the injector.

	bases – Besides registering the exact component type,
also register for all of the component’s base classes.
Defaults to True.

	overwrite_bases – If any of the component’s base classes
are already registered with the injector, overwrite those
registrations. Defaults to True.

	
register_factory(factory: Callable[[], Any], *, bases: bool = True, overwrite_bases: bool = True, persistent: bool = False) → None

	Register a new factory function with the injector. Not that the
factory function’s return type annotation should be set to the
type of the component you want to inject.

	Parameters

	
	factory – The factory function. Will be called without
arguments and should return the instantiated component. If
the factory returns an Awaitable it can only used to inject
into coroutine functions.

	bases – Besides registering the exact component type,
also register for all of the component’s base classes.
Defaults to True.

	overwrite_bases – If any of the component’s base classes
are already registered with the injector, overwrite those
registrations. Defaults to True.

	persistent – When materializing the component using the
factory, insert the component into the scope where the
factory is registered instead of the current scope.
Defaults to False.

	
scope() → component_injector.Context

	Return a context manager that you can use to enter a new scpoe.
When leaving the scope, any components or factories added to
the injector will be forgotten.

	Returns

	The scope context object. You can use this to re-enter
this scope at a later time if needed.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 component_injector	

Index

 C
 | G
 | I
 | R
 | S

C

 	
 	component_injector (module)

G

 	
 	get_component() (component_injector.Injector method)

 	
 	get_component_async() (component_injector.Injector method)

I

 	
 	inject() (component_injector.Injector method)

 	
 	Injector (class in component_injector)

R

 	
 	register() (component_injector.Injector method)

 	
 	register_factory() (component_injector.Injector method)

S

 	
 	scope() (component_injector.Injector method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 component-injector

 		
 Components

 		
 Factories

 		
 Asynchronous factories

 		
 Scopes

 		
 Basic usage

 		
 Persistent factories

 		
 Re-entering scopes

 		
 component_injector

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

